Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rong Wan,^a* Feng Wu,^a Lin Cao^b and Jin-Tang Wang^a

^aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China, and ^bDepartment of Pharmaceutical Analysis, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, People's Republic of China

Correspondence e-mail: rwan01@jlonline.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.045 wR factor = 0.146 Data-to-parameter ratio = 15.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-[5-(3,5-Dimethylphenyl)-1,3,4-thiadiazol-2-yl]-2-(4-methoxyphenyl)thiazolidin-4-one

The title compound, $C_{20}H_{19}N_3O_2S_2$, crystallizes with $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds which form a threedimensional network. Received 15 February 2006 Accepted 11 April 2006

Comment

Thiadiazole derivatives containing the thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal and herbicidal activities (Arun *et al.*, 1999) and others show insecticidal activities (Wasfy *et al.*, 1996). We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. Intermolecular $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds form a three-dimensional network (Table 1 and Fig. 2).

Experimental

For the preparation of the title compound, [5-(3,5-dimethylphenyl)-1,3,4-thiadiazol-2-yl]-(4-methoxybenzylidene)amine (5 mmol) andmercaptoacetic acid (5 mmol) were added to toluene (50 ml). Thewater produced by the condensation reaction was removed bydistillation over a period of 5 h. The reaction mixture was then left tocool to room temperature and filtered; the filter cake was recrystallized from acetone to give pure compound (I) (m.p. 463–464 K).Crystals of (I) suitable for X-ray diffraction were obtained by slowevaporation of an acetone solution.

Crystal data

$C_{20}H_{19}N_3O_2S_2$
$M_r = 397.50$
Monoclinic, $P2_1/c$
a = 13.892 (3) Å
b = 7.2560 (15)Å
c = 18.912 (4) Å
$\beta = 95.86 \ (3)^{\circ}$
V = 1896.4 (7) Å ³

Z = 4 D_x = 1.392 Mg m⁻³ Mo K α radiation μ = 0.30 mm⁻¹ T = 293 (2) K Block, colourless 0.30 × 0.20 × 0.10 mm

© 2006 International Union of Crystallography All rights reserved

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The hydrogen bonding in (I), with dashed lines indicating intermolecular $C-H \cdots O$ and $C-H \cdots N$ hydrogen bonds.

Data collection

Enraf-Nonius CAD-4	3709 independent reflections
diffractometer	2904 reflections with $I > 2\sigma(I)$
$\omega/2\theta$ scans	$R_{int} = 0.019$
Absorption correction: ψ scan	$\theta_{max} = 26.0^{\circ}$
(North <i>et al.</i> , 1968)	3 standard reflections
$T_{min} = 0.915, T_{max} = 0.971$	every 200 reflections
3866 measured reflections	intensity decay: none
Refinement	
Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
$wR(F^2) = 0.146$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{max} = 0.001$
3709 reflections	$\Delta\rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
244 parameters	$\Delta\rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$

l able 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$ \begin{array}{c} \hline C3 - H3B \cdots N3^{i} \\ C8 - H8A \cdots O1^{i} \end{array} $	0.93 0.98	2.62 2.57	3.533 (3) 3.530 (3)	169 166

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

All H atoms were positioned geometrically, with C-H distances in the range 0.93-0.97 Å, and included in the refinement in a ridingmodel approximation, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97.

References

- Arun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect B, 38, 998-1001.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect B, 35, 1218-1220.